NUMERICAL METHODS

Chapter 5: Iterative Methods for System of Nonlinear Equations

Assoc. Prof. Dr. Annie Gorgey
Email: annie_gorgey@fsmt.upsi.edu.my
Department of Mathematics
Faculty of Science and Mathematics
Sultan Idris Education University, Malaysia

The objectives of this chapter are

* To calculate the Jacobian of a vector valued function;
\star To solve a small system of nonlinear equations using Newton method;
\star To use finite differencing to approximate the Jacobian of a vector valued function;

System of Nonlinear Equations

The main objective is to find the root of x such that

$$
f(x)=0,
$$

Question: What is the solution x of $f(x)=0$?.

For example, consider the function $f(x)$ given as follows:

$$
\begin{aligned}
x_{1}^{2}+x_{2}^{2}-1 & =0 \\
x_{1}^{2}-x_{2}^{2} & =0 .
\end{aligned}
$$

How can you find the solution x to this function? How many solutions you can have for this function?.

A quick answer to that questions can be answered by producing the graph of that given function. As shown in Figure 1, there are four solutions for that function.

Figure: Nonlinear system

To check whether these are solutions to that function, just plug in the values for x_{1} and x_{2} into the two components of $f(x)$ and simplify. You should get zero for both components.

Example

Let $f(x)=0$ be defined as

$$
\begin{aligned}
x_{1}^{2}+x_{2}^{2}-1 & =0 \\
x_{1}^{2}-x_{2}^{2} & =0
\end{aligned}
$$

Given $x^{(k)}=\left[x_{1}^{(k)}, x_{2}^{(k)}\right]^{T}$, use a linear approximation to find δx such that $f\left(x^{(k)}+\delta\right) \approx 0$.
Note: δ often known as the rate of change. In this case the rate of change $\delta=x^{(k)}-x^{(k-1)}$.

Solution

The superscript (k) are dropped and replaced δx by δ to simplify the notation.

$$
f(x)=\left[\begin{array}{c}
x_{1}^{2}+x_{2}^{2}-1 . \\
x_{1}^{2}-x_{2}^{2}
\end{array}\right]
$$

Solution

$$
\begin{aligned}
f(x+\delta) & =\left[\begin{array}{c}
\left(x_{1}+\delta_{1}\right)^{2}+\left(x_{2}+\delta_{2}\right)^{2}-1 \\
\left(x_{1}+\delta_{1}\right)^{2}-\left(x_{2}+\delta_{2}\right)^{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
x_{1}^{2}+x_{2}^{2}-1+2\left(x_{1} \delta_{1}+x_{2} \delta_{2}\right)+\left(\delta_{1}^{2}+\delta_{2}^{2}\right) \\
x_{1}^{2}-x_{2}^{2}+2\left(x_{1} \delta_{1}-x_{2} \delta_{2}\right)+\left(\delta_{1}^{2}-\delta_{2}^{2}\right)
\end{array}\right], \\
& =\left[\begin{array}{c}
x_{1}^{2}+x_{2}^{2}-1 \\
x_{1}^{2}-x_{2}^{2}
\end{array}\right]+2\left[\begin{array}{c}
x_{1}+x_{2} \\
x_{1}-x_{2}
\end{array}\right]\left[\begin{array}{l}
\delta_{1} \\
\delta_{2}
\end{array}\right]+O\left(\delta_{1}^{2}, \delta_{2}^{2}\right), \\
& =f(x)+J(x) \delta+O\left(\delta_{1}^{2}, \delta_{2}^{2}\right)
\end{aligned}
$$

Jacobian Matrix

$J(x)$ is called the Jacobian (see below for a general definition). A linear approximation is formed to the right hand side by omitting the δ_{1}^{2} and δ_{2}^{2} terms. This gives

$$
f(x+\delta) \approx f(x)+J(x) \delta
$$

To find δ such that $f(x+\delta) \approx 0$, set the right hand side of the above equation to zero and solve for δ. This gives

$$
\begin{aligned}
f(x)+J(x) \delta & =0 \\
J(x) \delta & =-f(x) .
\end{aligned}
$$

Since $J(x)$ is a matrix, you cannot divide by $J(x)$. In order to simplify this term, multiply front left with $[J(x)]^{-1}$ since any matrices multiply by its inverse gives the identity I such that $A^{-1} A=I$ provided A is a non singular matrix.

This yields

$$
\begin{aligned}
{[J(x)]^{-1} J(x) \delta } & =-[J(x)]^{-1} f(x), \\
\delta & =-[J(x)]^{-1} f(x) .
\end{aligned}
$$

Thus,

$$
x^{(k)}-x^{(k-1)}=-\left[J\left(x^{(k-1)}\right)\right]^{-1} f\left(x^{(k-1)}\right) .
$$

Then the new value, $x^{(k)}$, is therefore given by

$$
x^{(k)}=x^{(k-1)}-\left[J\left(x^{(k-1)}\right)\right]^{-1} f\left(x^{(k-1)}\right) .
$$

This equation is known as the Newton iteration.

Jacobian Matrix

The Jacobian matrix is needed in order to use the Newton method. Jacobian matrix is the matrix of all first-order partial derivatives of a vector-valued function. The matrix must be a square matrix. The definition of Jacobian matrix is given in Definition 4.

Definition

The Jacobian of $f(x)$ where $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined as

$$
J(x)=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \ldots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \ldots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \ldots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]
$$

To understand the Jacobian matrix definition, consider Example 5.

Example

Write down the Jacobian for the following system

$$
\begin{aligned}
5 x_{1}^{2}-e^{x_{1} x_{2}}=0, & \rightarrow f_{1}, \\
x_{1} x_{2}+2 \cos \left(x_{2}\right)=0, & \rightarrow f_{2} .
\end{aligned}
$$

Solution

The above systems involves the variables x_{1} and x_{2}. By the Definition 4,

$$
\begin{aligned}
& \frac{\partial f_{1}}{\partial x_{1}}=10 x_{1}-x_{2} e^{x_{1} x_{2}} \\
& \frac{\partial f_{1}}{\partial x_{2}}=-x_{1} e^{x_{1} x_{2}} \\
& \frac{\partial f_{2}}{\partial x_{1}}=x_{2} \\
& \frac{\partial f_{2}}{\partial x_{2}}=x_{1}-2 \sin \left(x_{2}\right)
\end{aligned}
$$

Solution

Thus, the Jacobian is given by

$$
J(x)=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
10 x_{1}-x_{2} e^{x_{1} x_{2}} & -x_{1} e^{x_{1} x_{2}} \\
x_{2} & x_{1}-2 \sin \left(x_{2}\right)
\end{array}\right] .
$$

Example

Given the system of nonlinear equations

$$
\begin{array}{r}
4 x_{1}^{2}-15 x_{1}+x_{2}^{2}+8=0 \\
\frac{1}{4} x_{1} x_{2}^{2}+2 x_{1}-5 x_{2}+2=0
\end{array}
$$

Find the Jacobian of that system.

Solution

The variables involves are x_{1} and x_{2}. The size of Jacobian is 2×2.

$$
J(x)=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
8 x_{1}-15 & 2 x_{2} \\
\frac{1}{4} x_{2}^{2}+2 & \frac{1}{2} x_{1} x_{2}-5
\end{array}\right] .
$$

Example

Find the Jacobian of this function

$$
f(x, y)=4 x^{2}-15 x \sin (y)+y^{2}
$$

Solution

By inspection, there are two variables x and y so the Jacobian is a 2×2 matrix.

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=8 x-15 \sin (y) \\
& \frac{\partial f}{\partial y}=-15 x \cos (y)+2 y
\end{aligned}
$$

Solution

The Jacobian is therefore given by

$$
\left[\begin{array}{ll}
\frac{\partial f_{x}}{\partial x} & \frac{\partial f_{x}}{\partial y} \\
\frac{\partial f_{y}}{\partial x} & \frac{\partial f_{y}}{\partial y}
\end{array}\right]=\left[\begin{array}{cc}
8 & -15 \cos (y) \\
-15 \cos (y) & 15 x \sin (y)+2
\end{array}\right] .
$$

The above Jacobian often regarded as the Hessian.

Newton-Raphson Method

Newton method is one of famous method to solve system of nonlinear equations. To solve ordinary differential equations using Runge-Kutta methods, Newton method is needed to solve the implicit equations. The method is also known as the Newton-Raphson method, that is named after Isaac Newton and Joseph Raphson. It is a method for finding successively better approximations to the roots (or zeroes) of a real-valued function.

Definition

Newton's equation for $f(x)=0$ where $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined as

$$
x^{(k)}=x^{(k-1)}-\left[J\left(x^{(k-1)}\right)\right]^{-1} f\left(x^{(k-1)}\right)
$$

Example

Apply two iterations of Newton-Raphson's method to

$$
\begin{aligned}
x_{1}^{2}+x_{2}^{2}-1 & =0 \\
x_{1}^{2}-x_{2}^{2} & =0 .
\end{aligned}
$$

Start with the initial estimate $x^{(0)}=[3 / 4,3 / 4]^{T}$.

Solution

First, find the Jacobian matrix. By inspection, the Jacobian is given by

$$
J(x)=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
2 x_{1} & 2 x_{2} \\
2 x_{1} & -2 x_{2}
\end{array}\right] .
$$

Solution

First Iteration
Given $x^{(0)}=[3 / 4,3 / 4]^{T}$ such that $x_{1}^{(0)}=3 / 4$ and $x_{2}^{(0)}=3 / 4$.

$$
\begin{aligned}
x^{(1)} & =x^{(0)}-\left[J\left(x^{(0)}\right)\right]^{-1} f\left(x^{(0)}\right) . \\
{\left[\begin{array}{c}
x_{1}^{(1)} \\
x_{2}^{(1)}
\end{array}\right] } & =\left[\begin{array}{c}
x_{1}^{(0)} \\
x_{2}^{(0)}
\end{array}\right]-\left[\begin{array}{cc}
2 x_{1}^{(0)} & 2 x_{2}^{(0)} \\
2 x_{1}^{(0)} & -2 x_{2}^{(0)}
\end{array}\right]^{-1}\left[\begin{array}{c}
\left(x_{1}^{(0)}\right)^{2}+\left(x_{2}^{(0)}\right)^{2}-1 \\
\left(x_{1}^{(0)}\right)^{2}-\left(x_{2}^{(0)}\right)^{2}
\end{array}\right], \\
& =\left[\begin{array}{l}
\frac{3}{4} \\
\frac{3}{4}
\end{array}\right]-\left[\begin{array}{cc}
2\left(\frac{3}{4}\right) & 2\left(\frac{3}{4}\right) \\
2\left(\frac{3}{4}\right) & -2\left(\frac{3}{4}\right)
\end{array}\right]^{-1}\left[\begin{array}{c}
\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{2}-1 \\
\left(\frac{3}{4}\right)^{2}-\left(\frac{3}{4}\right)^{2}
\end{array}\right]
\end{aligned}
$$

Solution

$$
\begin{aligned}
{\left[\begin{array}{c}
x_{1}^{(1)} \\
x_{2}^{(1)}
\end{array}\right] } & =\left[\begin{array}{c}
\frac{3}{4} \\
\frac{3}{4}
\end{array}\right]-\left[\begin{array}{cc}
\frac{3}{2} & \frac{3}{2} \\
\frac{3}{2} & -\frac{3}{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
\frac{9}{16}+\frac{9}{16}-1 \\
0
\end{array}\right], \\
& =\left[\begin{array}{l}
\frac{3}{4} \\
\frac{3}{4}
\end{array}\right]-\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & -\frac{1}{3}
\end{array}\right]\left[\begin{array}{l}
\frac{1}{8} \\
0
\end{array}\right], \\
& =\left[\begin{array}{l}
\frac{3}{4} \\
\frac{3}{4}
\end{array}\right]-\left[\begin{array}{c}
\frac{1}{24} \\
\frac{1}{24}
\end{array}\right]=\left[\begin{array}{l}
\frac{17}{24} \\
\frac{17}{24}
\end{array}\right], \\
& =\left[\begin{array}{l}
0.7083 \\
0.7083
\end{array}\right] .
\end{aligned}
$$

Solution

Second Iteration
Now $x^{(1)}=[17 / 24,17 / 24]^{T}$ such that $x_{1}^{(1)}=17 / 24$ and $x_{2}^{(1)}=17 / 24$.

$$
\begin{aligned}
x^{(2)} & =x^{(1)}-\left[J\left(x^{(1)}\right)\right]^{-1} f\left(x^{(1)}\right) . \\
{\left[\begin{array}{c}
x_{1}^{(2)} \\
x_{2}^{(2)}
\end{array}\right] } & =\left[\begin{array}{c}
x_{1}^{(1)} \\
x_{2}^{(1)}
\end{array}\right]-\left[\begin{array}{cc}
2 x_{1}^{(1)} & 2 x_{2}^{(1)} \\
2 x_{1}^{(1)} & -2 x_{2}^{(1)}
\end{array}\right]^{-1}\left[\begin{array}{c}
\left(x_{1}^{(1)}\right)^{2}+\left(x_{2}^{(1)}\right)^{2}-1 \\
\left(x_{1}^{(1)}\right)^{2}-\left(x_{2}^{(1)}\right)^{2}
\end{array}\right]
\end{aligned}
$$

Solution

$$
\begin{aligned}
{\left[\begin{array}{c}
x_{1}^{(2)} \\
x_{2}^{(2)}
\end{array}\right] } & =\left[\begin{array}{l}
\frac{17}{24} \\
\frac{17}{24}
\end{array}\right]-\left[\begin{array}{cc}
2\left(\frac{17}{24}\right) & 2\left(\frac{17}{24}\right) \\
2\left(\frac{17}{24}\right) & -2\left(\frac{17}{24}\right)
\end{array}\right]^{-1}\left[\begin{array}{c}
\left(\frac{17}{24}\right)^{2}+\left(\frac{17}{24}\right)^{2}-1 \\
\left(\frac{17}{24}\right)^{2}-\left(\frac{17}{24}\right)^{2}
\end{array}\right], \\
& =\left[\begin{array}{c}
\frac{17}{24} \\
\frac{17}{24}
\end{array}\right]-\left[\begin{array}{cc}
\frac{17}{12} & \frac{17}{12} \\
\frac{17}{12} & -\frac{17}{12}
\end{array}\right]^{-1}\left[\begin{array}{c}
\frac{1}{288} \\
0
\end{array}\right], \\
& =\left[\begin{array}{c}
\frac{17}{24} \\
\frac{17}{24}
\end{array}\right]-\left[\begin{array}{cc}
\frac{6}{17} & \frac{6}{17} \\
\frac{6}{17} & -\frac{6}{17}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{288} \\
0
\end{array}\right], \\
& =\left[\begin{array}{c}
\frac{17}{24} \\
\frac{17}{24}
\end{array}\right]-\left[\begin{array}{c}
\frac{1}{816} \\
\frac{1}{816}
\end{array}\right]=\left[\begin{array}{c}
\frac{577}{816} \\
\frac{577}{816}
\end{array}\right]=\left[\begin{array}{l}
0.7071 \\
0.7071
\end{array}\right] .
\end{aligned}
$$

Example

Apply two iterations of Newton-Raphson's method to

$$
\begin{aligned}
5 x_{1}^{2}-e^{x_{1} x_{2}} & =0 \\
x_{1} x_{2}+2 \cos \left(x_{2}\right) & =0 .
\end{aligned}
$$

Start with the initial estimate $x^{(0)}=[1,0]^{T}$.

Solution

The Jacobian matrix is given by

$$
\left[\begin{array}{cc}
10 x_{1}-x_{2} e^{x_{1} x_{2}} & -x_{1} e^{x_{1} x_{2}} \\
x_{2} & x_{1}-2 \sin \left(x_{2}\right)
\end{array}\right] .
$$

Solution

First Iteration
Given $x^{(0)}=[1,0]^{T}$ such that $x_{1}^{(0)}=1$ and $x_{2}^{(0)}=0$.

$$
\begin{aligned}
x^{(1)} & =x^{(0)}-\left[J\left(x^{(0)}\right)\right]^{-1} f\left(x^{(0)}\right) . \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right]-\left[\begin{array}{cc}
10(1)-0 & -1 e^{0} \\
0 & 1-2 \sin (0)
\end{array}\right]^{-1}\left[\begin{array}{c}
5(1)^{2}-e^{0} \\
(1)(0)+2 \cos (0)
\end{array}\right], \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right]-\left[\begin{array}{cc}
10 & -1 \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
5-1 \\
0+2
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right]-\left[\begin{array}{cc}
0.1 & 0.1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{l}
0.4 \\
-2
\end{array}\right] .
\end{aligned}
$$

Thus, $x^{(1)}=[0.4000,-2.0000]^{T}$.

Solution

Second Iteration
From the first iteration, $x^{(1)}=[0.4000,-2.0000]^{T}$ such that $x_{1}^{(1)}=0.4000$ and $x_{2}^{(1)}=-2.0000$.

$$
\begin{aligned}
{\left[\begin{array}{c}
x_{1}^{(2)} \\
x_{2}^{(2)}
\end{array}\right] } & =\left[\begin{array}{l}
0.4 \\
-2
\end{array}\right]-\left[\begin{array}{cc}
4.8987 & -0.1797 \\
-2 & 2.2186
\end{array}\right]^{-1}\left[\begin{array}{c}
0.3507 \\
-1.6323
\end{array}\right] \\
& =\left[\begin{array}{l}
0.4 \\
-2
\end{array}\right]-\left[\begin{array}{ll}
0.2111 & 0.0171 \\
0.1903 & 0.4661
\end{array}\right]\left[\begin{array}{c}
0.3507 \\
-1.6323
\end{array}\right] \\
& =\left[\begin{array}{l}
0.4 \\
-2
\end{array}\right]-\left[\begin{array}{l}
0.04611 \\
-0.6942
\end{array}\right]=\left[\begin{array}{c}
0.3539 \\
-1.3058
\end{array}\right]
\end{aligned}
$$

This gives $x^{(2)}=[0.3539,-1.3058]^{T}$.

Example

Consider the system of nonlinear equations

$$
\begin{array}{r}
x_{1}\left(x_{2}^{2}+1\right)+\sin \left(x_{1}\right)-2+x_{2}=0, \\
x_{2}+x_{2}^{3}+\cos \left(x_{1}\right)-3=0 .
\end{array}
$$

(a) Give the Jacobian of the system at $[0,0]^{T}$.
(b) Apply one iteration of Newton-Raphson's method using the initial estimate $x^{(0)}=[0,0]^{T}$.

Solution

(a) Give the Jacobian of the system at $[0,0]^{T}$.

$$
J(x)=\left[\begin{array}{cc}
x_{2}^{2}+1+\cos \left(x_{1}\right) & 2 x_{1} x_{2}+1 \\
-\sin \left(x_{1}\right) & 1+3 x_{2}^{2}
\end{array}\right]
$$

Solution

(b) Apply one iteration of Newton-Raphson's method using the initial estimate $x^{(0)}=[0,0]^{T}$.

$$
\begin{aligned}
x^{(1)} & =x^{(0)}-\left[J\left(x^{(0)}\right)\right]^{-1} f\left(x^{(k-1)}\right) . \\
{\left[\begin{array}{l}
x_{1}^{(1)} \\
x_{2}^{(1)}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]-\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
-2 \\
-2
\end{array}\right], \\
& =\left[\begin{array}{l}
0 \\
0
\end{array}\right]-\left[\begin{array}{cc}
0.5 & -0.5 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
-2 \\
-2
\end{array}\right], \\
& =\left[\begin{array}{l}
0 \\
2
\end{array}\right] .
\end{aligned}
$$

The formulas for the Newton-Raphson method is summarized as follows:
If it is a scalar nonlinear equation then use

$$
x^{(k)}=x^{(k-1)}-\frac{f\left(x^{(k-1)}\right)}{f^{\prime}\left(x^{(k-1)}\right)} .
$$

If you are give a system of nonlinear equation, then you need to use the following equation

$$
x^{(k)}=x^{(k-1)}-\left[J\left(x^{(k-1)}\right)\right]^{-1} f\left(x^{(k-1)}\right) .
$$

