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Learning outcomes

The objectives of this chapter are

⋆ To calculate the Jacobian of a vector valued function;

⋆ To solve a small system of nonlinear equations using Newton
method;

⋆ To use finite differencing to approximate the Jacobian of a
vector valued function;
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System of Nonlinear Equations

System of Nonlinear Equations

The main objective is to find the root of x such that

f (x) = 0,

Question: What is the solution x of f (x) = 0?.

3/39



NUMERICAL METHODS Chapter 5: Iterative Methods for System of Nonlinear Equations

System of Nonlinear Equations

For example, consider the function f (x) given as follows:

x21 + x22 − 1 = 0,

x21 − x22 = 0.

How can you find the solution x to this function? How many
solutions you can have for this function?.
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System of Nonlinear Equations

A quick answer to that questions can be answered by producing
the graph of that given function. As shown in Figure 1, there are
four solutions for that function.
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Figure: Nonlinear system
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System of Nonlinear Equations

To check whether these are solutions to that function, just plug in
the values for x1 and x2 into the two components of f (x) and
simplify. You should get zero for both components.
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System of Nonlinear Equations

Example

Let f (x) = 0 be defined as

x21 + x22 − 1 = 0,

x21 − x22 = 0.

Given x (k) = [x
(k)
1 , x

(k)
2 ]T , use a linear approximation to find δx

such that f (x (k) + δ) ≈ 0.
Note: δ often known as the rate of change. In this case the rate
of change δ = x (k) − x (k−1).
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System of Nonlinear Equations

Solution

The superscript (k) are dropped and replaced δx by δ to simplify

the notation.

f (x) =





x21 + x22 − 1.

x21 − x22



 .
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System of Nonlinear Equations

Solution

f (x + δ) =





(x1 + δ1)
2 + (x2 + δ2)

2 − 1

(x1 + δ1)
2 − (x2 + δ2)

2



 ,

=





x21 + x22 − 1 + 2(x1δ1 + x2δ2) + (δ21 + δ22)

x21 − x22 + 2(x1δ1 − x2δ2) + (δ21 − δ22)



 ,

=





x21 + x22 − 1

x21 − x22



+ 2





x1 + x2

x1 − x2









δ1

δ2



+ O(δ21 , δ
2
2),

= f (x) + J(x)δ + O(δ21 , δ
2
2),
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System of Nonlinear Equations

Jacobian Matrix

J(x) is called the Jacobian (see below for a general definition). A
linear approximation is formed to the right hand side by omitting
the δ21 and δ22 terms. This gives

f (x + δ) ≈ f (x) + J(x)δ.
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System of Nonlinear Equations

To find δ such that f (x + δ) ≈ 0, set the right hand side of the
above equation to zero and solve for δ. This gives

f (x) + J(x)δ = 0,

J(x)δ = −f (x).

Since J(x) is a matrix, you cannot divide by J(x). In order to
simplify this term, multiply front left with [J(x)]−1 since any
matrices multiply by its inverse gives the identity I such that
A−1A = I provided A is a non singular matrix.
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System of Nonlinear Equations

This yields

[J(x)]−1J(x)δ = −[J(x)]−1f (x),

δ = −[J(x)]−1f (x).

Thus,
x (k) − x (k−1) = −[J(x (k−1))]−1f (x (k−1)).

Then the new value, x (k), is therefore given by

x (k) = x (k−1) − [J(x (k−1))]−1f (x (k−1)).

This equation is known as the Newton iteration.
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Jacobian Matrix

Jacobian Matrix

The Jacobian matrix is needed in order to use the Newton method.
Jacobian matrix is the matrix of all first-order partial derivatives of
a vector-valued function. The matrix must be a square matrix.
The definition of Jacobian matrix is given in Definition 4.
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Jacobian Matrix

Definition

The Jacobian of f (x) where f (x) : Rn → R
n is defined as

J(x) =

















∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

...
...

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn
















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Jacobian Matrix

To understand the Jacobian matrix definition, consider Example 5.

Example

Write down the Jacobian for the following system

5x21 − ex1x2 = 0, → f1,

x1x2 + 2 cos(x2) = 0, → f2.
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Jacobian Matrix

Solution

The above systems involves the variables x1 and x2. By the

Definition 4,

∂f1
∂x1

= 10x1 − x2e
x1x2 .

∂f1
∂x2

= −x1e
x1x2 .

∂f2
∂x1

= x2.

∂f2
∂x2

= x1 − 2 sin(x2).
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Jacobian Matrix

Solution

Thus, the Jacobian is given by

J(x) =





∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2



 =





10x1 − x2e
x1x2 −x1e

x1x2

x2 x1 − 2 sin(x2)



 .
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Jacobian Matrix

Example

Given the system of nonlinear equations

4x21 − 15x1 + x22 + 8 = 0,

1

4
x1x

2
2 + 2x1 − 5x2 + 2 = 0.

Find the Jacobian of that system.
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Jacobian Matrix

Solution

The variables involves are x1 and x2. The size of Jacobian is 2× 2.

J(x) =





∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2



 =





8x1 − 15 2x2

1
4x

2
2 + 2 1

2x1x2 − 5



 .
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Jacobian Matrix

Example

Find the Jacobian of this function

f (x , y) = 4x2 − 15x sin(y) + y2.
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Jacobian Matrix

Solution

By inspection, there are two variables x and y so the Jacobian is a

2× 2 matrix.

∂f

∂x
= 8x − 15 sin(y).

∂f

∂y
= −15x cos(y) + 2y .
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Jacobian Matrix

Solution

The Jacobian is therefore given by





∂fx
∂x

∂fx
∂y

∂fy
∂x

∂fy
∂y



 =





8 −15 cos(y)

−15 cos(y) 15x sin(y) + 2



 .

The above Jacobian often regarded as the Hessian.
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Newton-Raphson Method

Newton-Raphson Method

Newton method is one of famous method to solve system of
nonlinear equations. To solve ordinary differential equations using
Runge-Kutta methods, Newton method is needed to solve the
implicit equations. The method is also known as the
Newton-Raphson method, that is named after Isaac Newton and
Joseph Raphson. It is a method for finding successively better
approximations to the roots (or zeroes) of a real-valued function.
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Newton-Raphson Method

Definition

Newton’s equation for f (x) = 0 where f (x) : Rn → R
n is defined

as
x (k) = x (k−1) − [J(x (k−1))]−1f (x (k−1)).

24/39



NUMERICAL METHODS Chapter 5: Iterative Methods for System of Nonlinear Equations

Newton-Raphson Method

Example

Apply two iterations of Newton-Raphson’s method to

x21 + x22 − 1 = 0,

x21 − x22 = 0.

Start with the initial estimate x (0) = [3/4, 3/4]T .
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Newton-Raphson Method

Solution

First, find the Jacobian matrix. By inspection, the Jacobian is

given by

J(x) =





∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2



 =





2x1 2x2

2x1 −2x2



 .
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Newton-Raphson Method

Solution

First Iteration

Given x (0) = [3/4, 3/4]T such that x
(0)
1 = 3/4 and x

(0)
2 = 3/4.

x (1) = x (0) − [J(x (0))]−1f (x (0)).




x
(1)
1

x
(1)
2



 =





x
(0)
1

x
(0)
2



−





2x
(0)
1 2x

(0)
2

2x
(0)
1 −2x

(0)
2





−1 



(x
(0)
1 )2 + (x

(0)
2 )2 − 1

(x
(0)
1 )2 − (x

(0)
2 )2



 ,

=





3
4

3
4



−





2(34) 2(34)

2(34) −2(34)





−1 



(34)
2 + (34)

2 − 1

(34)
2 − (34)

2




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Newton-Raphson Method

Solution





x
(1)
1

x
(1)
2



 =





3
4

3
4



−





3
2

3
2

3
2 −3

2





−1 



9
16 + 9

16 − 1

0



 ,

=





3
4

3
4



−





1
3

1
3

1
3 −1

3









1
8

0



 ,

=





3
4

3
4



−





1
24

1
24



 =





17
24

17
24



 ,

=





0.7083

0.7083



 .
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Newton-Raphson Method

Solution

Second Iteration

Now x (1) = [17/24, 17/24]T such that x
(1)
1 = 17/24 and

x
(1)
2 = 17/24.

x (2) = x (1) − [J(x (1))]−1f (x (1)).




x
(2)
1

x
(2)
2



 =





x
(1)
1

x
(1)
2



−





2x
(1)
1 2x

(1)
2

2x
(1)
1 −2x

(1)
2





−1 



(x
(1)
1 )2 + (x

(1)
2 )2 − 1

(x
(1)
1 )2 − (x

(1)
2 )2




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Newton-Raphson Method

Solution





x
(2)
1

x
(2)
2



 =





17
24

17
24



−





2(1724) 2(1724)

2(1724) −2(1724)





−1 



(1724)
2 + (1724)

2 − 1

(1724)
2 − (1724)

2



 ,

=





17
24

17
24



−





17
12

17
12

17
12 −17

12





−1 



1
288

0



 ,

=





17
24

17
24



−





6
17

6
17

6
17 − 6

17









1
288

0



 ,

=





17
24

17
24



−





1
816

1
816



 =





577
816

577
816



 =





0.7071

0.7071



 .
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Newton-Raphson Method

Example

Apply two iterations of Newton-Raphson’s method to

5x21 − ex1x2 = 0,

x1x2 + 2 cos(x2) = 0.

Start with the initial estimate x (0) = [1, 0]T .
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Newton-Raphson Method

Solution

The Jacobian matrix is given by





10x1 − x2e
x1x2 −x1e

x1x2

x2 x1 − 2 sin(x2)



 .
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Newton-Raphson Method

Solution

First Iteration

Given x (0) = [1, 0]T such that x
(0)
1 = 1 and x

(0)
2 = 0.

x (1) = x (0) − [J(x (0))]−1f (x (0)).

=





1

0



−





10(1)− 0 −1e0

0 1− 2 sin(0)





−1 



5(1)2 − e0

(1)(0) + 2 cos(0)



 ,

=





1

0



−





10 −1

0 1





−1 



5− 1

0 + 2



 ,

=





1

0



−





0.1 0.1

0 1









4

2



 =





0.4

−2



 .

Thus, x (1) = [0.4000,−2.0000]T .
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Newton-Raphson Method

Solution

Second Iteration

From the first iteration, x (1) = [0.4000,−2.0000]T such that

x
(1)
1 = 0.4000 and x

(1)
2 = −2.0000.





x
(2)
1

x
(2)
2



 =





0.4

−2



−





4.8987 −0.1797

−2 2.2186





−1 



0.3507

−1.6323



 ,

=





0.4

−2



−





0.2111 0.0171

0.1903 0.4661









0.3507

−1.6323



 ,

=





0.4

−2



−





0.04611

−0.6942



 =





0.3539

−1.3058



 .

This gives x (2) = [0.3539,−1.3058]T .
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Newton-Raphson Method

Example

Consider the system of nonlinear equations

x1(x
2
2 + 1) + sin(x1)− 2 + x2 = 0,

x2 + x32 + cos(x1)− 3 = 0.

(a) Give the Jacobian of the system at [0, 0]T .

(b) Apply one iteration of Newton-Raphson’s method using the
initial estimate x (0) = [0, 0]T .
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Newton-Raphson Method

Solution

(a) Give the Jacobian of the system at [0, 0]T .

J(x) =





x22 + 1 + cos(x1) 2x1x2 + 1

− sin(x1) 1 + 3x22



 .
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Newton-Raphson Method

Solution

(b) Apply one iteration of Newton-Raphson’s method using the

initial estimate x (0) = [0, 0]T .

x (1) = x (0) − [J(x (0))]−1f (x (k−1)).




x
(1)
1

x
(1)
2



 =





0

0



−





2 1

0 1





−1 



−2

−2



 ,

=





0

0



−





0.5 −0.5

0 1









−2

−2



 ,

=





0

2



 .
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Newton-Raphson Method

The formulas for the Newton-Raphson method is summarized as
follows:
If it is a scalar nonlinear equation then use

x (k) = x (k−1) −
f (x (k−1))

f ′(x (k−1))
.

If you are give a system of nonlinear equation, then you need to
use the following equation

x (k) = x (k−1) − [J(x (k−1))]−1f (x (k−1)).
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